The fine structure constant: A radiative series leading to it's exact value

Hans de Vries*

August 31, 2005

Abstract

A Mclauren like series expansion method produces a simple radiative series for the low energy limit of the fine structure constant which is exact to within all experimental digits with a deviation of the experimental mean $\epsilon < 10^{-10}$.

1 Alpha series

A function's complete description in the form of a McLauren expansion needs in principle only the the information from a single point and its infinitesimal small environment. A similar "McLauren like" method is used here to derive a series with radiative corrections from the single (yet highly accurate) value α . The only tricky point is to find the value to which the series converges. The successful ansatz turned out to be a Gaussian constant:

$$\sqrt{\alpha} \approx e^{-\pi^2/4} \tag{1}$$

From here on we can develop a series Γ with radiative corrections by taking successive differences so that we can write for the value of alpha:

$$\alpha = \Gamma^2 e^{-\pi^2/2} \tag{2}$$

resulting in:

$$\Gamma = 1 + \frac{\alpha}{(2\pi)^0} \left(1 + \frac{\alpha}{(2\pi)^1} \left(1 + \frac{\alpha}{(2\pi)^2} \left(1 + \dots \right) \right) \right)$$
(3)

This series converges straightforward to reproduce the value of the fine structure constant exact in all its digits when compared with the latest Codata 2004 value:

uncorrected ansatz:	$0.007\underline{19188335582}$	
correction to order 1:	$0.007297\underline{22791748}$	
correction to order 2:	$0.0072973525\underline{4562}$	(4)
correction to order 3:	$0.007297352568\underline{65}$	
experimental value:	$0.007297352568 \ (\pm 24)$	

Leading to a value of α with an overall precision better than one in ten billion! (not withstanding the sigma of ± 24). Further evaluation of the above series leads to a value with an increased precision:

$$\alpha = 0.00729735256865385342269 \tag{5}$$

^{*} hans devries @chip-architect.com